\(\int \frac {a+b \log (c x^n)}{x^3 (d+e x)^7} \, dx\) [73]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 401 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=-\frac {b n}{4 d^7 x^2}+\frac {7 b e n}{d^8 x}-\frac {b e^2 n}{30 d^4 (d+e x)^5}-\frac {23 b e^2 n}{120 d^5 (d+e x)^4}-\frac {34 b e^2 n}{45 d^6 (d+e x)^3}-\frac {14 b e^2 n}{5 d^7 (d+e x)^2}-\frac {131 b e^2 n}{10 d^8 (d+e x)}-\frac {131 b e^2 n \log (x)}{10 d^9}-\frac {a+b \log \left (c x^n\right )}{2 d^7 x^2}+\frac {7 e \left (a+b \log \left (c x^n\right )\right )}{d^8 x}+\frac {e^2 \left (a+b \log \left (c x^n\right )\right )}{6 d^3 (d+e x)^6}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{5 d^4 (d+e x)^5}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^5 (d+e x)^4}+\frac {10 e^2 \left (a+b \log \left (c x^n\right )\right )}{3 d^6 (d+e x)^3}+\frac {15 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^7 (d+e x)^2}-\frac {21 e^3 x \left (a+b \log \left (c x^n\right )\right )}{d^9 (d+e x)}-\frac {28 e^2 \log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^9}+\frac {341 b e^2 n \log (d+e x)}{10 d^9}+\frac {28 b e^2 n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^9} \]

[Out]

-1/4*b*n/d^7/x^2+7*b*e*n/d^8/x-1/30*b*e^2*n/d^4/(e*x+d)^5-23/120*b*e^2*n/d^5/(e*x+d)^4-34/45*b*e^2*n/d^6/(e*x+
d)^3-14/5*b*e^2*n/d^7/(e*x+d)^2-131/10*b*e^2*n/d^8/(e*x+d)-131/10*b*e^2*n*ln(x)/d^9+1/2*(-a-b*ln(c*x^n))/d^7/x
^2+7*e*(a+b*ln(c*x^n))/d^8/x+1/6*e^2*(a+b*ln(c*x^n))/d^3/(e*x+d)^6+3/5*e^2*(a+b*ln(c*x^n))/d^4/(e*x+d)^5+3/2*e
^2*(a+b*ln(c*x^n))/d^5/(e*x+d)^4+10/3*e^2*(a+b*ln(c*x^n))/d^6/(e*x+d)^3+15/2*e^2*(a+b*ln(c*x^n))/d^7/(e*x+d)^2
-21*e^3*x*(a+b*ln(c*x^n))/d^9/(e*x+d)-28*e^2*ln(1+d/e/x)*(a+b*ln(c*x^n))/d^9+341/10*b*e^2*n*ln(e*x+d)/d^9+28*b
*e^2*n*polylog(2,-d/e/x)/d^9

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 401, normalized size of antiderivative = 1.00, number of steps used = 23, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {46, 2393, 2341, 2356, 2351, 31, 2379, 2438} \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=-\frac {21 e^3 x \left (a+b \log \left (c x^n\right )\right )}{d^9 (d+e x)}-\frac {28 e^2 \log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d^9}+\frac {7 e \left (a+b \log \left (c x^n\right )\right )}{d^8 x}+\frac {15 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^7 (d+e x)^2}-\frac {a+b \log \left (c x^n\right )}{2 d^7 x^2}+\frac {10 e^2 \left (a+b \log \left (c x^n\right )\right )}{3 d^6 (d+e x)^3}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^5 (d+e x)^4}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{5 d^4 (d+e x)^5}+\frac {e^2 \left (a+b \log \left (c x^n\right )\right )}{6 d^3 (d+e x)^6}+\frac {28 b e^2 n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^9}-\frac {131 b e^2 n \log (x)}{10 d^9}+\frac {341 b e^2 n \log (d+e x)}{10 d^9}-\frac {131 b e^2 n}{10 d^8 (d+e x)}+\frac {7 b e n}{d^8 x}-\frac {14 b e^2 n}{5 d^7 (d+e x)^2}-\frac {b n}{4 d^7 x^2}-\frac {34 b e^2 n}{45 d^6 (d+e x)^3}-\frac {23 b e^2 n}{120 d^5 (d+e x)^4}-\frac {b e^2 n}{30 d^4 (d+e x)^5} \]

[In]

Int[(a + b*Log[c*x^n])/(x^3*(d + e*x)^7),x]

[Out]

-1/4*(b*n)/(d^7*x^2) + (7*b*e*n)/(d^8*x) - (b*e^2*n)/(30*d^4*(d + e*x)^5) - (23*b*e^2*n)/(120*d^5*(d + e*x)^4)
 - (34*b*e^2*n)/(45*d^6*(d + e*x)^3) - (14*b*e^2*n)/(5*d^7*(d + e*x)^2) - (131*b*e^2*n)/(10*d^8*(d + e*x)) - (
131*b*e^2*n*Log[x])/(10*d^9) - (a + b*Log[c*x^n])/(2*d^7*x^2) + (7*e*(a + b*Log[c*x^n]))/(d^8*x) + (e^2*(a + b
*Log[c*x^n]))/(6*d^3*(d + e*x)^6) + (3*e^2*(a + b*Log[c*x^n]))/(5*d^4*(d + e*x)^5) + (3*e^2*(a + b*Log[c*x^n])
)/(2*d^5*(d + e*x)^4) + (10*e^2*(a + b*Log[c*x^n]))/(3*d^6*(d + e*x)^3) + (15*e^2*(a + b*Log[c*x^n]))/(2*d^7*(
d + e*x)^2) - (21*e^3*x*(a + b*Log[c*x^n]))/(d^9*(d + e*x)) - (28*e^2*Log[1 + d/(e*x)]*(a + b*Log[c*x^n]))/d^9
 + (341*b*e^2*n*Log[d + e*x])/(10*d^9) + (28*b*e^2*n*PolyLog[2, -(d/(e*x))])/d^9

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2351

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[x*(d + e*x^r)^(q +
 1)*((a + b*Log[c*x^n])/d), x] - Dist[b*(n/d), Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)
*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] - Dist[b*n*(p/(e*(q + 1))), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2379

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Simp[(-Log[1 +
d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)), x] + Dist[b*n*(p/(d*r)), Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^
(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]

Rule 2393

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a+b \log \left (c x^n\right )}{d^7 x^3}-\frac {7 e \left (a+b \log \left (c x^n\right )\right )}{d^8 x^2}-\frac {e^3 \left (a+b \log \left (c x^n\right )\right )}{d^3 (d+e x)^7}-\frac {3 e^3 \left (a+b \log \left (c x^n\right )\right )}{d^4 (d+e x)^6}-\frac {6 e^3 \left (a+b \log \left (c x^n\right )\right )}{d^5 (d+e x)^5}-\frac {10 e^3 \left (a+b \log \left (c x^n\right )\right )}{d^6 (d+e x)^4}-\frac {15 e^3 \left (a+b \log \left (c x^n\right )\right )}{d^7 (d+e x)^3}-\frac {21 e^3 \left (a+b \log \left (c x^n\right )\right )}{d^8 (d+e x)^2}+\frac {28 e^2 \left (a+b \log \left (c x^n\right )\right )}{d^8 x (d+e x)}\right ) \, dx \\ & = \frac {\int \frac {a+b \log \left (c x^n\right )}{x^3} \, dx}{d^7}-\frac {(7 e) \int \frac {a+b \log \left (c x^n\right )}{x^2} \, dx}{d^8}+\frac {\left (28 e^2\right ) \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)} \, dx}{d^8}-\frac {\left (21 e^3\right ) \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^2} \, dx}{d^8}-\frac {\left (15 e^3\right ) \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^3} \, dx}{d^7}-\frac {\left (10 e^3\right ) \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^4} \, dx}{d^6}-\frac {\left (6 e^3\right ) \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^5} \, dx}{d^5}-\frac {\left (3 e^3\right ) \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^6} \, dx}{d^4}-\frac {e^3 \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^7} \, dx}{d^3} \\ & = -\frac {b n}{4 d^7 x^2}+\frac {7 b e n}{d^8 x}-\frac {a+b \log \left (c x^n\right )}{2 d^7 x^2}+\frac {7 e \left (a+b \log \left (c x^n\right )\right )}{d^8 x}+\frac {e^2 \left (a+b \log \left (c x^n\right )\right )}{6 d^3 (d+e x)^6}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{5 d^4 (d+e x)^5}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^5 (d+e x)^4}+\frac {10 e^2 \left (a+b \log \left (c x^n\right )\right )}{3 d^6 (d+e x)^3}+\frac {15 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^7 (d+e x)^2}-\frac {21 e^3 x \left (a+b \log \left (c x^n\right )\right )}{d^9 (d+e x)}-\frac {28 e^2 \log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^9}+\frac {\left (28 b e^2 n\right ) \int \frac {\log \left (1+\frac {d}{e x}\right )}{x} \, dx}{d^9}-\frac {\left (15 b e^2 n\right ) \int \frac {1}{x (d+e x)^2} \, dx}{2 d^7}-\frac {\left (10 b e^2 n\right ) \int \frac {1}{x (d+e x)^3} \, dx}{3 d^6}-\frac {\left (3 b e^2 n\right ) \int \frac {1}{x (d+e x)^4} \, dx}{2 d^5}-\frac {\left (3 b e^2 n\right ) \int \frac {1}{x (d+e x)^5} \, dx}{5 d^4}-\frac {\left (b e^2 n\right ) \int \frac {1}{x (d+e x)^6} \, dx}{6 d^3}+\frac {\left (21 b e^3 n\right ) \int \frac {1}{d+e x} \, dx}{d^9} \\ & = -\frac {b n}{4 d^7 x^2}+\frac {7 b e n}{d^8 x}-\frac {a+b \log \left (c x^n\right )}{2 d^7 x^2}+\frac {7 e \left (a+b \log \left (c x^n\right )\right )}{d^8 x}+\frac {e^2 \left (a+b \log \left (c x^n\right )\right )}{6 d^3 (d+e x)^6}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{5 d^4 (d+e x)^5}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^5 (d+e x)^4}+\frac {10 e^2 \left (a+b \log \left (c x^n\right )\right )}{3 d^6 (d+e x)^3}+\frac {15 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^7 (d+e x)^2}-\frac {21 e^3 x \left (a+b \log \left (c x^n\right )\right )}{d^9 (d+e x)}-\frac {28 e^2 \log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^9}+\frac {21 b e^2 n \log (d+e x)}{d^9}+\frac {28 b e^2 n \text {Li}_2\left (-\frac {d}{e x}\right )}{d^9}-\frac {\left (15 b e^2 n\right ) \int \left (\frac {1}{d^2 x}-\frac {e}{d (d+e x)^2}-\frac {e}{d^2 (d+e x)}\right ) \, dx}{2 d^7}-\frac {\left (10 b e^2 n\right ) \int \left (\frac {1}{d^3 x}-\frac {e}{d (d+e x)^3}-\frac {e}{d^2 (d+e x)^2}-\frac {e}{d^3 (d+e x)}\right ) \, dx}{3 d^6}-\frac {\left (3 b e^2 n\right ) \int \left (\frac {1}{d^4 x}-\frac {e}{d (d+e x)^4}-\frac {e}{d^2 (d+e x)^3}-\frac {e}{d^3 (d+e x)^2}-\frac {e}{d^4 (d+e x)}\right ) \, dx}{2 d^5}-\frac {\left (3 b e^2 n\right ) \int \left (\frac {1}{d^5 x}-\frac {e}{d (d+e x)^5}-\frac {e}{d^2 (d+e x)^4}-\frac {e}{d^3 (d+e x)^3}-\frac {e}{d^4 (d+e x)^2}-\frac {e}{d^5 (d+e x)}\right ) \, dx}{5 d^4}-\frac {\left (b e^2 n\right ) \int \left (\frac {1}{d^6 x}-\frac {e}{d (d+e x)^6}-\frac {e}{d^2 (d+e x)^5}-\frac {e}{d^3 (d+e x)^4}-\frac {e}{d^4 (d+e x)^3}-\frac {e}{d^5 (d+e x)^2}-\frac {e}{d^6 (d+e x)}\right ) \, dx}{6 d^3} \\ & = -\frac {b n}{4 d^7 x^2}+\frac {7 b e n}{d^8 x}-\frac {b e^2 n}{30 d^4 (d+e x)^5}-\frac {23 b e^2 n}{120 d^5 (d+e x)^4}-\frac {34 b e^2 n}{45 d^6 (d+e x)^3}-\frac {14 b e^2 n}{5 d^7 (d+e x)^2}-\frac {131 b e^2 n}{10 d^8 (d+e x)}-\frac {131 b e^2 n \log (x)}{10 d^9}-\frac {a+b \log \left (c x^n\right )}{2 d^7 x^2}+\frac {7 e \left (a+b \log \left (c x^n\right )\right )}{d^8 x}+\frac {e^2 \left (a+b \log \left (c x^n\right )\right )}{6 d^3 (d+e x)^6}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{5 d^4 (d+e x)^5}+\frac {3 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^5 (d+e x)^4}+\frac {10 e^2 \left (a+b \log \left (c x^n\right )\right )}{3 d^6 (d+e x)^3}+\frac {15 e^2 \left (a+b \log \left (c x^n\right )\right )}{2 d^7 (d+e x)^2}-\frac {21 e^3 x \left (a+b \log \left (c x^n\right )\right )}{d^9 (d+e x)}-\frac {28 e^2 \log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^9}+\frac {341 b e^2 n \log (d+e x)}{10 d^9}+\frac {28 b e^2 n \text {Li}_2\left (-\frac {d}{e x}\right )}{d^9} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 486, normalized size of antiderivative = 1.21 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=\frac {-\frac {180 a d^2}{x^2}-\frac {90 b d^2 n}{x^2}+\frac {2520 a d e}{x}+\frac {2520 b d e n}{x}+\frac {60 a d^6 e^2}{(d+e x)^6}+\frac {216 a d^5 e^2}{(d+e x)^5}-\frac {12 b d^5 e^2 n}{(d+e x)^5}+\frac {540 a d^4 e^2}{(d+e x)^4}-\frac {69 b d^4 e^2 n}{(d+e x)^4}+\frac {1200 a d^3 e^2}{(d+e x)^3}-\frac {272 b d^3 e^2 n}{(d+e x)^3}+\frac {2700 a d^2 e^2}{(d+e x)^2}-\frac {1008 b d^2 e^2 n}{(d+e x)^2}+\frac {7560 a d e^2}{d+e x}-\frac {4716 b d e^2 n}{d+e x}-12276 b e^2 n \log (x)+\frac {10080 a e^2 \log \left (c x^n\right )}{n}-\frac {180 b d^2 \log \left (c x^n\right )}{x^2}+\frac {2520 b d e \log \left (c x^n\right )}{x}+\frac {60 b d^6 e^2 \log \left (c x^n\right )}{(d+e x)^6}+\frac {216 b d^5 e^2 \log \left (c x^n\right )}{(d+e x)^5}+\frac {540 b d^4 e^2 \log \left (c x^n\right )}{(d+e x)^4}+\frac {1200 b d^3 e^2 \log \left (c x^n\right )}{(d+e x)^3}+\frac {2700 b d^2 e^2 \log \left (c x^n\right )}{(d+e x)^2}+\frac {7560 b d e^2 \log \left (c x^n\right )}{d+e x}+\frac {5040 b e^2 \log ^2\left (c x^n\right )}{n}+12276 b e^2 n \log (d+e x)-10080 a e^2 \log \left (1+\frac {e x}{d}\right )-10080 b e^2 \log \left (c x^n\right ) \log \left (1+\frac {e x}{d}\right )-10080 b e^2 n \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{360 d^9} \]

[In]

Integrate[(a + b*Log[c*x^n])/(x^3*(d + e*x)^7),x]

[Out]

((-180*a*d^2)/x^2 - (90*b*d^2*n)/x^2 + (2520*a*d*e)/x + (2520*b*d*e*n)/x + (60*a*d^6*e^2)/(d + e*x)^6 + (216*a
*d^5*e^2)/(d + e*x)^5 - (12*b*d^5*e^2*n)/(d + e*x)^5 + (540*a*d^4*e^2)/(d + e*x)^4 - (69*b*d^4*e^2*n)/(d + e*x
)^4 + (1200*a*d^3*e^2)/(d + e*x)^3 - (272*b*d^3*e^2*n)/(d + e*x)^3 + (2700*a*d^2*e^2)/(d + e*x)^2 - (1008*b*d^
2*e^2*n)/(d + e*x)^2 + (7560*a*d*e^2)/(d + e*x) - (4716*b*d*e^2*n)/(d + e*x) - 12276*b*e^2*n*Log[x] + (10080*a
*e^2*Log[c*x^n])/n - (180*b*d^2*Log[c*x^n])/x^2 + (2520*b*d*e*Log[c*x^n])/x + (60*b*d^6*e^2*Log[c*x^n])/(d + e
*x)^6 + (216*b*d^5*e^2*Log[c*x^n])/(d + e*x)^5 + (540*b*d^4*e^2*Log[c*x^n])/(d + e*x)^4 + (1200*b*d^3*e^2*Log[
c*x^n])/(d + e*x)^3 + (2700*b*d^2*e^2*Log[c*x^n])/(d + e*x)^2 + (7560*b*d*e^2*Log[c*x^n])/(d + e*x) + (5040*b*
e^2*Log[c*x^n]^2)/n + 12276*b*e^2*n*Log[d + e*x] - 10080*a*e^2*Log[1 + (e*x)/d] - 10080*b*e^2*Log[c*x^n]*Log[1
 + (e*x)/d] - 10080*b*e^2*n*PolyLog[2, -((e*x)/d)])/(360*d^9)

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 3.62 (sec) , antiderivative size = 594, normalized size of antiderivative = 1.48

method result size
risch \(-\frac {28 b \ln \left (x^{n}\right ) e^{2} \ln \left (e x +d \right )}{d^{9}}+\frac {21 b \ln \left (x^{n}\right ) e^{2}}{d^{8} \left (e x +d \right )}+\frac {15 b \ln \left (x^{n}\right ) e^{2}}{2 d^{7} \left (e x +d \right )^{2}}+\frac {10 b \ln \left (x^{n}\right ) e^{2}}{3 d^{6} \left (e x +d \right )^{3}}+\frac {3 b \ln \left (x^{n}\right ) e^{2}}{2 d^{5} \left (e x +d \right )^{4}}+\frac {3 b \ln \left (x^{n}\right ) e^{2}}{5 d^{4} \left (e x +d \right )^{5}}+\frac {b \ln \left (x^{n}\right ) e^{2}}{6 d^{3} \left (e x +d \right )^{6}}-\frac {b \ln \left (x^{n}\right )}{2 d^{7} x^{2}}+\frac {28 b \ln \left (x^{n}\right ) e^{2} \ln \left (x \right )}{d^{9}}+\frac {7 b \ln \left (x^{n}\right ) e}{d^{8} x}-\frac {131 b \,e^{2} n}{10 d^{8} \left (e x +d \right )}+\frac {341 b \,e^{2} n \ln \left (e x +d \right )}{10 d^{9}}-\frac {14 b \,e^{2} n}{5 d^{7} \left (e x +d \right )^{2}}-\frac {34 b \,e^{2} n}{45 d^{6} \left (e x +d \right )^{3}}-\frac {23 b \,e^{2} n}{120 d^{5} \left (e x +d \right )^{4}}-\frac {b \,e^{2} n}{30 d^{4} \left (e x +d \right )^{5}}-\frac {b n}{4 d^{7} x^{2}}+\frac {7 b e n}{d^{8} x}-\frac {341 b \,e^{2} n \ln \left (x \right )}{10 d^{9}}-\frac {14 b n \,e^{2} \ln \left (x \right )^{2}}{d^{9}}+\frac {28 b n \,e^{2} \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{d^{9}}+\frac {28 b n \,e^{2} \operatorname {dilog}\left (-\frac {e x}{d}\right )}{d^{9}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \left (-\frac {28 e^{2} \ln \left (e x +d \right )}{d^{9}}+\frac {21 e^{2}}{d^{8} \left (e x +d \right )}+\frac {15 e^{2}}{2 d^{7} \left (e x +d \right )^{2}}+\frac {10 e^{2}}{3 d^{6} \left (e x +d \right )^{3}}+\frac {3 e^{2}}{2 d^{5} \left (e x +d \right )^{4}}+\frac {3 e^{2}}{5 d^{4} \left (e x +d \right )^{5}}+\frac {e^{2}}{6 d^{3} \left (e x +d \right )^{6}}-\frac {1}{2 d^{7} x^{2}}+\frac {28 e^{2} \ln \left (x \right )}{d^{9}}+\frac {7 e}{d^{8} x}\right )\) \(594\)

[In]

int((a+b*ln(c*x^n))/x^3/(e*x+d)^7,x,method=_RETURNVERBOSE)

[Out]

-28*b*ln(x^n)/d^9*e^2*ln(e*x+d)+21*b*ln(x^n)/d^8*e^2/(e*x+d)+15/2*b*ln(x^n)/d^7*e^2/(e*x+d)^2+10/3*b*ln(x^n)/d
^6/(e*x+d)^3*e^2+3/2*b*ln(x^n)/d^5/(e*x+d)^4*e^2+3/5*b*ln(x^n)/d^4/(e*x+d)^5*e^2+1/6*b*ln(x^n)/d^3/(e*x+d)^6*e
^2-1/2*b*ln(x^n)/d^7/x^2+28*b*ln(x^n)/d^9*e^2*ln(x)+7*b*ln(x^n)/d^8*e/x-131/10*b*e^2*n/d^8/(e*x+d)+341/10*b*e^
2*n*ln(e*x+d)/d^9-14/5*b*e^2*n/d^7/(e*x+d)^2-34/45*b*e^2*n/d^6/(e*x+d)^3-23/120*b*e^2*n/d^5/(e*x+d)^4-1/30*b*e
^2*n/d^4/(e*x+d)^5-1/4*b*n/d^7/x^2+7*b*e*n/d^8/x-341/10*b*e^2*n*ln(x)/d^9-14*b*n/d^9*e^2*ln(x)^2+28*b*n/d^9*e^
2*ln(e*x+d)*ln(-e*x/d)+28*b*n/d^9*e^2*dilog(-e*x/d)+(-1/2*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I*b*P
i*csgn(I*c)*csgn(I*c*x^n)^2+1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-1/2*I*b*Pi*csgn(I*c*x^n)^3+b*ln(c)+a)*(-28/
d^9*e^2*ln(e*x+d)+21/d^8*e^2/(e*x+d)+15/2/d^7*e^2/(e*x+d)^2+10/3/d^6/(e*x+d)^3*e^2+3/2/d^5/(e*x+d)^4*e^2+3/5/d
^4/(e*x+d)^5*e^2+1/6/d^3/(e*x+d)^6*e^2-1/2/d^7/x^2+28/d^9*e^2*ln(x)+7/d^8*e/x)

Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{7} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x+d)^7,x, algorithm="fricas")

[Out]

integral((b*log(c*x^n) + a)/(e^7*x^10 + 7*d*e^6*x^9 + 21*d^2*e^5*x^8 + 35*d^3*e^4*x^7 + 35*d^4*e^3*x^6 + 21*d^
5*e^2*x^5 + 7*d^6*e*x^4 + d^7*x^3), x)

Sympy [A] (verification not implemented)

Time = 156.80 (sec) , antiderivative size = 1737, normalized size of antiderivative = 4.33 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*ln(c*x**n))/x**3/(e*x+d)**7,x)

[Out]

-a*e**3*Piecewise((x/d**7, Eq(e, 0)), (-1/(6*e*(d + e*x)**6), True))/d**3 - 3*a*e**3*Piecewise((x/d**6, Eq(e,
0)), (-1/(5*e*(d + e*x)**5), True))/d**4 - 6*a*e**3*Piecewise((x/d**5, Eq(e, 0)), (-1/(4*e*(d + e*x)**4), True
))/d**5 - 10*a*e**3*Piecewise((x/d**4, Eq(e, 0)), (-1/(3*e*(d + e*x)**3), True))/d**6 - 15*a*e**3*Piecewise((x
/d**3, Eq(e, 0)), (-1/(2*e*(d + e*x)**2), True))/d**7 - a/(2*d**7*x**2) - 21*a*e**3*Piecewise((x/d**2, Eq(e, 0
)), (-1/(d*e + e**2*x), True))/d**8 + 7*a*e/(d**8*x) - 28*a*e**3*Piecewise((x/d, Eq(e, 0)), (log(d + e*x)/e, T
rue))/d**9 + 28*a*e**2*log(x)/d**9 + b*e**3*n*Piecewise((x/d**7, Eq(e, 0)), (-137*d**4/(360*d**10*e + 1800*d**
9*e**2*x + 3600*d**8*e**3*x**2 + 3600*d**7*e**4*x**3 + 1800*d**6*e**5*x**4 + 360*d**5*e**6*x**5) - 385*d**3*e*
x/(360*d**10*e + 1800*d**9*e**2*x + 3600*d**8*e**3*x**2 + 3600*d**7*e**4*x**3 + 1800*d**6*e**5*x**4 + 360*d**5
*e**6*x**5) - 470*d**2*e**2*x**2/(360*d**10*e + 1800*d**9*e**2*x + 3600*d**8*e**3*x**2 + 3600*d**7*e**4*x**3 +
 1800*d**6*e**5*x**4 + 360*d**5*e**6*x**5) - 270*d*e**3*x**3/(360*d**10*e + 1800*d**9*e**2*x + 3600*d**8*e**3*
x**2 + 3600*d**7*e**4*x**3 + 1800*d**6*e**5*x**4 + 360*d**5*e**6*x**5) - 60*e**4*x**4/(360*d**10*e + 1800*d**9
*e**2*x + 3600*d**8*e**3*x**2 + 3600*d**7*e**4*x**3 + 1800*d**6*e**5*x**4 + 360*d**5*e**6*x**5) - log(x)/(6*d*
*6*e) + log(d/e + x)/(6*d**6*e), True))/d**3 - b*e**3*Piecewise((x/d**7, Eq(e, 0)), (-1/(6*e*(d + e*x)**6), Tr
ue))*log(c*x**n)/d**3 + 3*b*e**3*n*Piecewise((x/d**6, Eq(e, 0)), (-25*d**3/(60*d**8*e + 240*d**7*e**2*x + 360*
d**6*e**3*x**2 + 240*d**5*e**4*x**3 + 60*d**4*e**5*x**4) - 52*d**2*e*x/(60*d**8*e + 240*d**7*e**2*x + 360*d**6
*e**3*x**2 + 240*d**5*e**4*x**3 + 60*d**4*e**5*x**4) - 42*d*e**2*x**2/(60*d**8*e + 240*d**7*e**2*x + 360*d**6*
e**3*x**2 + 240*d**5*e**4*x**3 + 60*d**4*e**5*x**4) - 12*e**3*x**3/(60*d**8*e + 240*d**7*e**2*x + 360*d**6*e**
3*x**2 + 240*d**5*e**4*x**3 + 60*d**4*e**5*x**4) - log(x)/(5*d**5*e) + log(d/e + x)/(5*d**5*e), True))/d**4 -
3*b*e**3*Piecewise((x/d**6, Eq(e, 0)), (-1/(5*e*(d + e*x)**5), True))*log(c*x**n)/d**4 + 6*b*e**3*n*Piecewise(
(x/d**5, Eq(e, 0)), (-11*d**2/(24*d**6*e + 72*d**5*e**2*x + 72*d**4*e**3*x**2 + 24*d**3*e**4*x**3) - 15*d*e*x/
(24*d**6*e + 72*d**5*e**2*x + 72*d**4*e**3*x**2 + 24*d**3*e**4*x**3) - 6*e**2*x**2/(24*d**6*e + 72*d**5*e**2*x
 + 72*d**4*e**3*x**2 + 24*d**3*e**4*x**3) - log(x)/(4*d**4*e) + log(d/e + x)/(4*d**4*e), True))/d**5 - 6*b*e**
3*Piecewise((x/d**5, Eq(e, 0)), (-1/(4*e*(d + e*x)**4), True))*log(c*x**n)/d**5 + 10*b*e**3*n*Piecewise((x/d**
4, Eq(e, 0)), (-3*d/(6*d**4*e + 12*d**3*e**2*x + 6*d**2*e**3*x**2) - 2*e*x/(6*d**4*e + 12*d**3*e**2*x + 6*d**2
*e**3*x**2) - log(x)/(3*d**3*e) + log(d/e + x)/(3*d**3*e), True))/d**6 - 10*b*e**3*Piecewise((x/d**4, Eq(e, 0)
), (-1/(3*e*(d + e*x)**3), True))*log(c*x**n)/d**6 + 15*b*e**3*n*Piecewise((x/d**3, Eq(e, 0)), (-1/(2*d**2*e +
 2*d*e**2*x) - log(x)/(2*d**2*e) + log(d/e + x)/(2*d**2*e), True))/d**7 - 15*b*e**3*Piecewise((x/d**3, Eq(e, 0
)), (-1/(2*e*(d + e*x)**2), True))*log(c*x**n)/d**7 - b*n/(4*d**7*x**2) - b*log(c*x**n)/(2*d**7*x**2) + 21*b*e
**3*n*Piecewise((x/d**2, Eq(e, 0)), (-log(x)/(d*e) + log(d/e + x)/(d*e), True))/d**8 - 21*b*e**3*Piecewise((x/
d**2, Eq(e, 0)), (-1/(d*e + e**2*x), True))*log(c*x**n)/d**8 + 7*b*e*n/(d**8*x) + 7*b*e*log(c*x**n)/(d**8*x) +
 28*b*e**3*n*Piecewise((x/d, Eq(e, 0)), (Piecewise((-polylog(2, e*x*exp_polar(I*pi)/d), (Abs(x) < 1) & (1/Abs(
x) < 1)), (log(d)*log(x) - polylog(2, e*x*exp_polar(I*pi)/d), Abs(x) < 1), (-log(d)*log(1/x) - polylog(2, e*x*
exp_polar(I*pi)/d), 1/Abs(x) < 1), (-meijerg(((), (1, 1)), ((0, 0), ()), x)*log(d) + meijerg(((1, 1), ()), (()
, (0, 0)), x)*log(d) - polylog(2, e*x*exp_polar(I*pi)/d), True))/e, True))/d**9 - 28*b*e**3*Piecewise((x/d, Eq
(e, 0)), (log(d + e*x)/e, True))*log(c*x**n)/d**9 - 14*b*e**2*n*log(x)**2/d**9 + 28*b*e**2*log(x)*log(c*x**n)/
d**9

Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{7} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x+d)^7,x, algorithm="maxima")

[Out]

1/30*a*((840*e^7*x^7 + 4620*d*e^6*x^6 + 10360*d^2*e^5*x^5 + 11970*d^3*e^4*x^4 + 7308*d^4*e^3*x^3 + 2058*d^5*e^
2*x^2 + 120*d^6*e*x - 15*d^7)/(d^8*e^6*x^8 + 6*d^9*e^5*x^7 + 15*d^10*e^4*x^6 + 20*d^11*e^3*x^5 + 15*d^12*e^2*x
^4 + 6*d^13*e*x^3 + d^14*x^2) - 840*e^2*log(e*x + d)/d^9 + 840*e^2*log(x)/d^9) + b*integrate((log(c) + log(x^n
))/(e^7*x^10 + 7*d*e^6*x^9 + 21*d^2*e^5*x^8 + 35*d^3*e^4*x^7 + 35*d^4*e^3*x^6 + 21*d^5*e^2*x^5 + 7*d^6*e*x^4 +
 d^7*x^3), x)

Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{7} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x+d)^7,x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)/((e*x + d)^7*x^3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 (d+e x)^7} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x^3\,{\left (d+e\,x\right )}^7} \,d x \]

[In]

int((a + b*log(c*x^n))/(x^3*(d + e*x)^7),x)

[Out]

int((a + b*log(c*x^n))/(x^3*(d + e*x)^7), x)